The Statistic

Raspberry Pi Media Player for
Older/Outdated Cars

Saraf Ray CS 121 5/04/18

Table of Gontents

Introduction ... 3
Cost Analysiscoovvviviiiiiiiiiiieennn
Time Analysiscoooviiiiiiiiiiiia,

Reflectionsccoovviiiiiiiiinnnnn. 6
Final Codeccoooiiiiiiiiiii., 7

(@317:1510) 1 L R 12

For this project I made a Raspberry Pi car music player. It runs on the official Raspberry
P1i touch screen and is coded using Python and Kivy, an open source Python library.

I wanted to create this project because of its functionality. It is mounted in my
roommate’s car (as I don’t drive), which I spend a lot of time in. Often times, when outside of
Burlington, we lose phone signal, so music services like Spotify or Soundcloud won’t work.
Other newer cars have music players built in, so adding a music player to a 2002 Prius is both a
functional and aesthetic upgrade.

Adding music to the Pi is very simple. The code directs the program to look at a certain
directory (/home/pi/Desktop/RPi Music) where the music files are located. To add music, one
can simply use a program such as FileZilla to move downloaded files from a laptop or desktop to

the correct location on the Pi.

Gost Analysis

Projected Costs

Tontec Touch Screen - $64
OR

Kuman Touch Screen - $54
Power Supply - $10
Cassette Adaptor - $20
USB Stick - $5

microSD Card - $15

Total - $114 with Tontec Touch Screen or $104 with Kuman Touch Screen

Overall Cost Estimate (including miscellaneous fees and miscalculations): $150
Actual Costs

Raspberry Pi Touch Screen - $75

Raspberry Pi Touch Screen Case - $15

USB Microphone - $7

Cassette Adaptor - $20

Mounts - $13

Total Cost: $120

Time Analysis

Initial Gantt Chart:

[Mt | We2s | At | s apts | a2 | hem |
S MT|WT|F| S 8MTWTF &8 SMTWTF S S8SMTWTF S S8SMTWTFSSMTWT|F S SMTWT|F|S
3 q

Connecting Raspberry Pi to Touch Screen
Loading Music and Connecting to Speaker
Adding voice activation, Google Assistant SDK

Extra Time for Miscellaneous |ssues

My time projections were quite off, but that is partly due to the fact that I took a different
approach to this project than I initially thought I would. When I decided to code the interface
using Python and Kivy, as opposed to using a distribution such as XBian, I realized that this
would lengthen this stage of the process. It took me a few days just to get a grasp of Kivy,
before I could make actual progress on the project. This didn’t give me time to add voice
activation as I would have liked. However, using Python and Kivy was still a rewarding, if

sometimes frustrating, experience.

Doing this project was definitely a learning experience. One of the first steps, purchasing
the touch screen, presented an important choice. There are many different touch screens
compatible with the Raspberry P1i, all with their own advantages and disadvantages. I chose the
Official Raspberry Pi touch screen due to its generally good reviews and the fact that it is the
official screen made by the company. However, the screen is designed for use with Raspbian
and is not compatible with all operating systems. I was unsure if my original plan to use XBian
would still be feasible.

When I found the Kivy library, I knew immediately that I had made an important
discovery. It seemed like an ideal way to create a music player interface using Python that
would run on the touch screen I had purchased. Unfortunately, installing Kivy on my laptop and
the Pi took way longer than it should have. This is because Kivy runs with Python 2.7, which
was making the installation difficult. After a few hours of figuring that out, I was ready to go.

I spent the next few days watching Kivy tutorials and playing around with different
layouts and interfaces. Once I felt I had a grasp of it, I asked Sam (my roommate and owner of
car) what he wanted the screen to look like. One important thing he mentioned was the date, as
it isn’t shown anywhere in the car. I designed my own interfaces, which functioned fine, but I
found a more aesthetically pleasing one on github. This interface, though, was not fully
functional. I had to make changes, adding and removing some things, to make it what I wanted.
Getting the play song function to resume from the paused point instead of starting the song over
was especially annoying. In the end, I did not have time to add functional voice activation.

Mounting the touch screen in the car was a lot easier than I thought it would be. I
purchased a case with built in holes for wall mount, and purchased metal mounts from
Michael’s. The Pi stands firmly, even when going over bumpy roads. It looks good in the car, if
I am being honest. In addition, the adaptor that the Pi plugs into is both an adaptor and a power

bank. It continues to power the Pi, even if unplugged from the car.

MusicPlayerforPi.py

If on Windows to avoid fullscreen, use the following two lines of code

from kivy.config import Config

Config.set('graphics', 'fullscreen’, '0")

from kivy.app import App

from kivy.lang import Builder

from kivy.uix.popup import Popup

from kivy.uix.button import Button

from kivy.uix.widget import Widget

from kivy.core.audio import SoundLoader
from kivy.properties import ObjectProperty
from kivy.uix.gridlayout import GridLayout

from kivy.uix.floatlayout import FloatLayout

from os import listdir, path
Builder.load_string("

#: kivy 1.10.0

#: import datetime datetime

<MusicPlayer>:

canvas.before:
Color:
rgba: 0,0, .1, 1
Rectangle:
pos: self.pos

size: self.size

Label:
id: date
text: datetime.datetime.now().strftime("%A %d %B %Y")
size: 200,35
background color: 0,.5,1,1

pos: root.width-200, root.top-35

ScrollView:
size_hint: None, None
size: root.width, root.height-135
pos: 0, 100
GridLayout:
id: scroll
cols: 1
spacing: 10
size_hint y: None
row_force_default: True

row_default height: 40

GridLayout:
rows: 1
pos: 0, 50
size: root.width, 50
Button:
id: pause
text: '||'
background color: 0,.5,1,1
on_press: root.pauseSong()
Button:
id: play
text: 'Play’
background_color: 0,.5,1,1
on_press: root.playSong(root.spot)
Button:
id: nowplay
text: 'Now Playing'
pos: 0,0
size: root.width, 50

background color: 0,.5,1,1

Label:
id: status
text: "

center: root.center

")

class MusicPlayer(Widget):
directory = "/home/pi/Desktop/RPi Music" # location of songs folder

nowPlaying =" # Song that is currently playing

spot = None

songs =[]

def getpath(self):
f = open("sav.dat", "r")
f.close()
self.getSongs()

def savepath(self, path):
f=open("sav.dat", "w"
f.write(path)
f.close()

def select(self, path):
self.directory = path
self.ids.direct.text = self.directory
self.savepath(self.directory)
self.getSongs()

def pauseSong(self):
if self.nowPlaying.state == 'play":
spot = self.nowPlaying.get _pos()
self.nowPlaying.stop()

self.spot = spot

def playSong(self, p):
if self.nowPlaying.state == 'stop':
self.nowPlaying.play()
self.nowPlaying.seek(p)

def getSongs(self):

songs = [] # List to hold songs from music directory

self.directory = "/home/pi/Desktop/RPi Music"

if self.directory ==":

self fileSelect()

To make sure that the directory ends with a /'
if not self.directory.endswith('/'):

self.directory +="/'

Check if directory exists
if not path.exists(self.directory):
self.ids.status.text = 'Folder Not Found'

self.ids.status.color = (1, 0, 0, 1)

else:

self.ids.status.text ="

self.ids.scroll.bind(minimum_height=self.ids.scroll.setter('height'))

get mp3 files from directory

for fil in listdir(self.directory):

if fil.endswith(".mp3'):

songs.append(fil)

If there are no mp3 files in the chosen directory

if songs == [] and self.directory !=":

self.ids.status.text = 'No Music Found'

self.ids.status.color = (1, 0, 0, 1)

songs.sort()

for song in songs:

def playSong(bt):

try:

self.nowPlaying.stop()
except:
pass
finally:
self.nowPlaying = SoundLoader.load(self.directory + bt.text + '.mp3")
self.nowPlaying.play()

self.ids.nowplay.text = bt.text

btn = Button(text=song[:-4], on_press=playSong)

Color Buttons Alternatively

if songs.index(song) % 2 == 0:
btn.background color=(0, 0, 1, 1)

else:

btn.background color = (0, 0, 2, 1)

self.ids.scroll.add_widget(btn) # Add btn to layout

self.songs = songs

class MusicApp(App):

def build(self):
music = MusicPlayer()
music.getpath()

return music

—_n "

if name ==" main_ ":

MusicApp().run()

11

Kivy library

https://kivy.org/#home

Base code for Music Player

https://github.com/JasonHinds13/KVMusicPlayer

YouTube Kivy Tutorials
https://www.youtube.com/playlist?list=PLGL{Vvz LVVTAZ-OcNIXe05srJRXaJRd9

Thank You!

A video of my project can be found here: https://www.youtube.com/watch?v=2gPi7cyNUVQ

12

https://kivy.org/#home
https://github.com/JasonHinds13/KVMusicPlayer
https://www.youtube.com/playlist?list=PLGLfVvz_LVvTAZ-OcNIXe05srJRXaJRd9
https://www.youtube.com/watch?v=ZqPi7cyNUVQ

