

The Statistic

Raspberry Pi Media Player for
Older/Outdated Cars

Saraf Ray CS 121 5/04/18

Final Report

1

Table of Contents

Introduction ……………………………… 3

Cost Analysis ……………………………… 4

Time Analysis ……………………………… 5

Reflections ……………………………… 6

Final Code ……………………………… 7

Citations ……………………………… 12

2

Introduction

For this project I made a Raspberry Pi car music player. It runs on the official Raspberry

Pi touch screen and is coded using Python and Kivy, an open source Python library.

I wanted to create this project because of its functionality. It is mounted in my

roommate’s car (as I don’t drive), which I spend a lot of time in. Often times, when outside of

Burlington, we lose phone signal, so music services like Spotify or Soundcloud won’t work.

Other newer cars have music players built in, so adding a music player to a 2002 Prius is both a

functional and aesthetic upgrade.

Adding music to the Pi is very simple. The code directs the program to look at a certain

directory (/home/pi/Desktop/RPi Music) where the music files are located. To add music, one

can simply use a program such as FileZilla to move downloaded files from a laptop or desktop to

the correct location on the Pi.

3

Cost Analysis

Projected Costs

Tontec Touch Screen - $64
OR

Kuman Touch Screen - $54

Power Supply - $10

Cassette Adaptor - $20

USB Stick - $5

microSD Card - $15

Total - $114 with Tontec Touch Screen or $104 with Kuman Touch Screen

Overall Cost Estimate​ (including miscellaneous fees and miscalculations): ​$150

Actual Costs

Raspberry Pi Touch Screen - $75

Raspberry Pi Touch Screen Case - $15

USB Microphone - $7

Cassette Adaptor - $20

Mounts - $13

Total Cost: $120

4

Time Analysis

Initial Gantt Chart:

My time projections were quite off, but that is partly due to the fact that I took a different

approach to this project than I initially thought I would. When I decided to code the interface

using Python and Kivy, as opposed to using a distribution such as XBian, I realized that this

would lengthen this stage of the process. It took me a few days just to get a grasp of Kivy,

before I could make actual progress on the project. This didn’t give me time to add voice

activation as I would have liked. However, using Python and Kivy was still a rewarding, if

sometimes frustrating, experience.

5

Reflections

Doing this project was definitely a learning experience. One of the first steps, purchasing

the touch screen, presented an important choice. There are many different touch screens

compatible with the Raspberry Pi, all with their own advantages and disadvantages. I chose the

Official Raspberry Pi touch screen due to its generally good reviews and the fact that it is the

official screen made by the company. However, the screen is designed for use with Raspbian

and is not compatible with all operating systems. I was unsure if my original plan to use XBian

would still be feasible.

When I found the Kivy library, I knew immediately that I had made an important

discovery. It seemed like an ideal way to create a music player interface using Python that

would run on the touch screen I had purchased. Unfortunately, installing Kivy on my laptop and

the Pi took way longer than it should have. This is because Kivy runs with Python 2.7, which

was making the installation difficult. After a few hours of figuring that out, I was ready to go.

I spent the next few days watching Kivy tutorials and playing around with different

layouts and interfaces. Once I felt I had a grasp of it, I asked Sam (my roommate and owner of

car) what he wanted the screen to look like. One important thing he mentioned was the date, as

it isn’t shown anywhere in the car. I designed my own interfaces, which functioned fine, but I

found a more aesthetically pleasing one on github. This interface, though, was not fully

functional. I had to make changes, adding and removing some things, to make it what I wanted.

Getting the play song function to resume from the paused point instead of starting the song over

was especially annoying. In the end, I did not have time to add functional voice activation.

Mounting the touch screen in the car was a lot easier than I thought it would be. I

purchased a case with built in holes for wall mount, and purchased metal mounts from

Michael’s. The Pi stands firmly, even when going over bumpy roads. It looks good in the car, if

I am being honest. In addition, the adaptor that the Pi plugs into is both an adaptor and a power

bank. It continues to power the Pi, even if unplugged from the car.

6

Final Code
MusicPlayerforPi.py
If on Windows to avoid fullscreen, use the following two lines of code

from kivy.config import Config

Config.set('graphics', 'fullscreen', '0')

from kivy.app import App

from kivy.lang import Builder

from kivy.uix.popup import Popup

from kivy.uix.button import Button

from kivy.uix.widget import Widget

from kivy.core.audio import SoundLoader

from kivy.properties import ObjectProperty

from kivy.uix.gridlayout import GridLayout

from kivy.uix.floatlayout import FloatLayout

from os import listdir, path

Builder.load_string('''

#: kivy 1.10.0

#: import datetime datetime

<MusicPlayer>:

 canvas.before:

 Color:

 rgba: 0, 0, .1, 1

 Rectangle:

 pos: self.pos

 size: self.size

 Label:

 id: date

 text: datetime.datetime.now().strftime("%A %d %B %Y")

 size: 200,35

 background_color: 0,.5,1,1

 pos: root.width-200, root.top-35

7

 ScrollView:

 size_hint: None, None

 size: root.width, root.height-135

 pos: 0, 100

 GridLayout:

 id: scroll

 cols: 1

 spacing: 10

 size_hint_y: None

 row_force_default: True

 row_default_height: 40

 GridLayout:

 rows: 1

 pos: 0, 50

 size: root.width, 50

 Button:

 id: pause

 text: '||'

 background_color: 0,.5,1,1

 on_press: root.pauseSong()

 Button:

 id: play

 text: 'Play'

 background_color: 0,.5,1,1

 on_press: root.playSong(root.spot)

 Button:

 id: nowplay

 text: 'Now Playing'

 pos: 0,0

 size: root.width, 50

 background_color: 0,.5,1,1

 Label:

 id: status

 text: ''

 center: root.center

8

''')

class MusicPlayer(Widget):

 directory = "/home/pi/Desktop/RPi Music" # location of songs folder

 nowPlaying = '' # Song that is currently playing

 spot = None

 songs = []

 def getpath(self):

 f = open("sav.dat", "r")

 f.close()

 self.getSongs()

 def savepath(self, path):

 f = open("sav.dat", "w")

 f.write(path)

 f.close()

 def select(self, path):

 self.directory = path

 self.ids.direct.text = self.directory

 self.savepath(self.directory)

 self.getSongs()

 def pauseSong(self):

 if self.nowPlaying.state == 'play':

 spot = self.nowPlaying.get_pos()

 self.nowPlaying.stop()

 self.spot = spot

 def playSong(self, p):

 if self.nowPlaying.state == 'stop':

 self.nowPlaying.play()

 self.nowPlaying.seek(p)

9

 def getSongs(self):

 songs = [] # List to hold songs from music directory

 self.directory = "/home/pi/Desktop/RPi Music"

 if self.directory == '':

 self.fileSelect()

 # To make sure that the directory ends with a '/'

 if not self.directory.endswith('/'):

 self.directory += '/'

 # Check if directory exists

 if not path.exists(self.directory):

 self.ids.status.text = 'Folder Not Found'

 self.ids.status.color = (1, 0, 0, 1)

 else:

 self.ids.status.text = ''

 self.ids.scroll.bind(minimum_height=self.ids.scroll.setter('height'))

 # get mp3 files from directory

 for fil in listdir(self.directory):

 if fil.endswith('.mp3'):

 songs.append(fil)

 # If there are no mp3 files in the chosen directory

 if songs == [] and self.directory != '':

 self.ids.status.text = 'No Music Found'

 self.ids.status.color = (1, 0, 0, 1)

 songs.sort()

 for song in songs:

 def playSong(bt):

 try:

10

 self.nowPlaying.stop()

 except:

 pass

 finally:

 self.nowPlaying = SoundLoader.load(self.directory + bt.text + '.mp3')

 self.nowPlaying.play()

 self.ids.nowplay.text = bt.text

 btn = Button(text=song[:-4], on_press=playSong)

 # Color Buttons Alternatively

 if songs.index(song) % 2 == 0:

 btn.background_color = (0, 0, 1, 1)

 else:

 btn.background_color = (0, 0, 2, 1)

 self.ids.scroll.add_widget(btn) # Add btn to layout

 self.songs = songs

class MusicApp(App):

 def build(self):

 music = MusicPlayer()

 music.getpath()

 return music

if __name__ == "__main__":

 MusicApp().run()

11

Citations

Kivy library

https://kivy.org/#home

Base code for Music Player

https://github.com/JasonHinds13/KVMusicPlayer

YouTube Kivy Tutorials

https://www.youtube.com/playlist?list=PLGLfVvz_LVvTAZ-OcNIXe05srJRXaJRd9

Thank You!
A video of my project can be found here: ​https://www.youtube.com/watch?v=ZqPi7cyNUVQ

12

https://kivy.org/#home
https://github.com/JasonHinds13/KVMusicPlayer
https://www.youtube.com/playlist?list=PLGLfVvz_LVvTAZ-OcNIXe05srJRXaJRd9
https://www.youtube.com/watch?v=ZqPi7cyNUVQ

